KVS PGT Math Question Paper 23 Dec 2018 PDF Download
केवीएस पीजीटी गणित प्रश्न पत्र 23 दिसंबर 2018 पीडीएफ डाउनलोड | KVS PGT Math Question Paper 2018 Download Free PDF – जो विद्यार्थी KVS PGT Math की परीक्षा की तैयारी कर रहे है ,उन्हें अपनी तैयारी पिछले साल के क्वेश्चन पेपरों को देखकर करनी चाहिए . इसलिए आज हमने इस पोस्ट में केवीएस पीजीटी गणित क्वेश्चन पेपर दिया गया है .जिसे देखकर आप अपनी तैयारी अच्छे से कर सकते है .और परीक्षा में अच्छे अंक प्राप्त कर सकते है. इसलिए आप इस KVS PGT Math Question Paper 2018 को अच्छे से करे यह आपकी परीक्षा के लिए फायदेमंद होगा . अगर आप KVS Math PGT 23 Dec 2018 Question Paper PDFडाउनलोड करना चाहते है तो नीचे दिए गए लिंक से डाउनलोड कर सकते है
[katex] \int\frac{e^{x}(1+sinx)}{(1+cox)} dx[/katex]
(A) [katex]e^{x}\cdot log(1+cosx)+C [/katex]
(B) [katex] e^{x}\cdot tan\left ( \frac{x}{2} \right )+C[/katex]
(C) [katex]e^{x}\cdot cotx+C [/katex]
(D) [katex]e^{x}\cdot tan\left ( tan\frac{x}{2} \right )+C [/katex]
Answer
[katex] e^{x}\cdot tan\left ( \frac{x}{2} \right )+C[/katex]
The equation of a sphere circumscribing a tetrahedron whose faces are x = 0, y = 0, z= 0 and [katex] \frac{x}{a}+\frac{y}{a}+\frac{z}{a}=1[/katex] is:
(A) x2 + y2 + z2 = a2 + b2+ c2
(B) x2 + y2 + z2 + 2ax + 2by + 2cz = 0
(C) x2 + y2+ z2 + ax + by + cz = 0
(D) x2 + y2 + z2 – ax – by – cz= 0
Answer
x2 + y2 + z2 – ax – by – cz= 0
A candidate is required to answer 7 questions out of 12 questions which are divided into two sections, each containing 6 questions. He is not allowed to attempt more than 5 questions from each group. In how many ways, he can attempt the paper?
(A) 180
(C) 792
(B) 600
(D) 780
A person is to count 4500 notes. Let an denote the number of notes that he counts in nth minute. … If a1 = a2 …= a10 = 150 and a10, a11, a12 are in AP with common difference -2, find the total time spent on counting 4500 notes.
(A) 24 minutes1
(B) 34 minutes
(C) 125 minutes
(D) 135 minutes
If the mean and standard deviation of 100 items are 50 and 4 respectively, then the sum of the product of squares of each of the items and its frequency is:
(A) 251600
(C) 265100
(B) 215600
(D) 216500
Identity permutation is always an:
(A) odd permutation
(B) even permutation
(C) cyclic permutation
(D) transposition
A committee of 6 is to be chosen from 10 men and 7 women so as to have at least 3 men and 2 women. In how many different ways can this be done if two particular women refuse to be in the same committee?
(A) 9376
(B) 8610
(C) 7800
(D) 7200
The series
[katex][\frac{1}{1^{p}}-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+….]:[/katex]
(A) converges for p > 0
(B) converges for p
(C) diverges for p > 0
(D) diverges for p Answer
converges for p > 0
If a, a, a, … are in H.P., then the expression a, is equal to: a12+ azaz + … + a,
(A) n(an– a2)
(B) (n – 1)(a1 – an)
(C) na1 an
(D) (n- 1)a1 an
If A and B are the points with co-ordinates (-3, 4) and (2, 1) respectively, then the co- ordinates of C on line AB produced such that AC 2BC are:
(A) (3, 7)
(B) (7,3) 15
(C) (7,-2)
(D) (3, 9)
The mean and variance of a random variable having binomial probability distribution are 4 and 2 respectively, then P(X = 1) is:
(A) [katex] \frac{1}{32}[/katex]
(B) [katex] \frac{1}{16}[/katex]
(C)[katex] \frac{1}{8}[/katex]
(D) [katex] \frac{1}{4}[/katex]
Answer
[katex] \frac{1}{32}[/katex]
The area (in square units) of the triangle formed by the two ends of a latus rectum and x2 a focus of the ellipse 2√3 y += 1, is:
(A) 2√3
(B) 8√3
(C) 4√3
(D) 16√3
The number of committees of five persons including a chairperson can be selected from 12 persons, is:
(A) 330
(B) 462
(C) 792
(D) 3960
The distance of the point P(4, 1) from the line 4x – y = 0 measured along the line making an angle of 135° with the positive direction of x-axis is:
(A) 2√3
(B) 3√2
(C) 4√2
(D) √2
The smallest positive integral value of n for which [katex]\left ( \frac{1+i}{1-i} \right )^{n}[/katex] = 1 is:
(A) 2
(B) 4
(C) 8
(D) 12
If the curve ay + x2 = 7 and x3=y, cut orthogonally at (1, 1), then the value of a is:
(A) 1
(B) 0
(C) 6
(D) -6
The variance of 20 observations is 5. If each observation is multiplied by 3 then variance for obtained observations is:
(A) 15
(B) 8
(C) 75
(D) 45
The coefficient of xn in the expansion of (1 + x)(1-x)nis:
(A) (n – 1)
(B) (-1)n-1n
(C) (-1)n(1-n)
(D) (-1)n-1 (n-1)2
The equation (sin-1 x)3 + (cos-1x)3 = Kπ3 has no solution for:
(A) K>[katex] \frac{1}{32}[/katex]
(B) K=[katex] \frac{1}{32}[/katex]
(C) K(D) K>[katex] \frac{1}{4}[/katex]
Answer
K>[katex] \frac{1}{32}[/katex]
Each side of a square ABCD subtends an angle of 60° at the top of a tower of height h, standing at the centre of the square. If a be the length of the side of square, then:
(A) 3a2 = 2h2
(B) 2a2= 3h2
(C) 2h2 = a2
(D) h2 = 2a2
If sin + cos 0= 1, then the value of sin 20 is;
(A) 1
(B)1/2
(C) 0
(D) -1
If a, ẞ ≠ 0 and f(n) = a
n + ẞ
n and =
[katex]\begin{vmatrix}
3 & 1+f(1) & 1+f(2) \\
1+f(1)& 1+f(2) & 1+f(3) \\
1+f(2) & 1+f(3) & 1+f(4) \\
\end{vmatrix}[/katex]
K(1-α)2 (1-β)2 (a-β)2 then K is equal to:
(A) αcc
(B) 1/aβ
(C) 1
(D) -1
The function f, given by
[katex]f(x)+\left\{\begin{matrix}
\frac{sinx^{2}}{x} & x\neq 0 \\
0, & x=0\\
\end{matrix}\right.is. [/katex]
(A) continuous and derivable at x = 0
(B) neither continuous nor derivable at x = 0
(C) continuous but not derivable at x = 0
(D) None of these
Answer
continuous and derivable at x = 0
The area bounded by the parabola y = x2 and the line y = 2x (in square units) is:
(A)[katex] \frac{2}{3}[/katex]
(B)[katex] \frac{4}{3}[/katex]
(C) [katex] \frac{8}{3}[/katex]
(D) 4
Answer
[katex] \frac{4}{3}[/katex]
If a and b are natural numbers such that a2 – b2 is prime number, then a2 – b2 equals:
(A) 1
(B) ab
(C) a-b
(D) a + b
The square root of 5+ 12i is:
(A) (3 + 2i)
(B) (2 + 3i)
(C) (2-3i)
(D) (3-2i)
Find the minimum value of :
(A) 1
(B) 2
(C) 4
(D) 16.
If a and b are unit vectors and 0 is angle a-b between them, then a-b/2 is:
(A) sin θ
(B) sin 2θ
(C) sin 0/2
(D) sin2 θ
If the coefficient of th, (r+ 1)th and (r + 2)th terms in the expansion of (1 + x)14 are in
(A)P., then the value of r is:
(A) 5 or 8
(B) 5 or 9
(C) 4 or 9
(D) 6 or 7
The first four terms of an A.P. are p, 9, 3p-q and 3p+q. Find the 2010th term of this A.P.:
(A) 8041
(B) 8043
(C) 8045
(D) 8047
The longest side of a triangle is twice the shortest side and the third side is 3 cm longer than the shortest side. If the perimeter of the triangle is more than 203 cm, then the minimum length of the shortest side is:
(A) 45 cm
(B) 46 cm
(C) 48 cm
(D) 50 cm
If x=[katex]\frac{3+5i}{2}[/katex] then the value of 2x3 – 6x2 + 2 17x + 12 is:
(A) 4
(B) 8
(C) 12
(D) 0
In a survey of 55 students, it is found that 30 students read newspaper A, 20 read newspaper B and 7 read both the newspapers. The number of students who read none of the newspapers is:
(A) 7
(B) 12
(C) 13
(D) 23
Let C[0, 1] be the set of all continuous functions defined in the interval [0, 1]. If on this set and are defined, then C[0, 1] is:
(A) a field
(B) an integral domain but not field
(C) a group but not a ring
(D) a ring but not an integral domain
Answer
a ring but not an integral domain
In a triangle ABC, the lengths of two larger sides BC and AC are 10 and 9 respectively. If the angles are in A.P., then the length of third side can be:
(A) 5+√6
(B) 6+√5
(C) 3√3
(D) 5
5+√6Full paper – KVS PGT Math Question Paper 2018 PDF Download
इस पोस्ट में आपको KVS PGT Math 23 Dec 2018 Question Paper PDF kvs pgt maths practice set kvs pgt mathematics previous year question papers pdf kvs maths question paper 2018 pdf download KVS PGT Math exam paper 23 Dec 2018 kvs pgt maths old question papers kvs pgt mathematics question paper pdf केवीएस पीजीटी गणित क्वेश्चन पेपर पीडीएफ केवीएस पीजीटी गणित प्रश्न पत्र 2018 से संबंधित काफी महत्वपूर्ण प्रश्न उत्तर दिए गए है यह प्रश्न उत्तर फायदेमंद लगे तो अपने दोस्तों के साथ शेयर करें और इसके बारे में आप कुछ जानना यह पूछना चाहते हैं तो नीचे कमेंट करके अवश्य पूछे.